Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.748
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Oncol Res ; 32(4): 691-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560565

RESUMO

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Clorofilídeos , Nanopartículas , Neoplasias , Osteossarcoma , Fotoquimioterapia , Humanos , Antígeno CD47 , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Imunoterapia , Neoplasias Ósseas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Microambiente Tumoral
2.
J Nanobiotechnology ; 22(1): 161, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589895

RESUMO

Antibiotic resistance has garnered significant attention due to the scarcity of new antibiotics in development. Protoporphyrin IX (PpIX)-mediated photodynamic therapy shows promise as a novel antibacterial strategy, serving as an alternative to antibiotics. However, the poor solubility of PpIX and its tendency to aggregate greatly hinder its photodynamic efficacy. In this study, we demonstrate that alkylated EDTA derivatives (aEDTA), particularly C14-EDTA, can enhance the solubility of PpIX by facilitating its dispersion in aqueous solutions. The combination of C14-EDTA and PpIX exhibits potent antibacterial activity against Staphylococcus aureus (S. aureus) when exposed to LED light irradiation. Furthermore, this combination effectively eradicates S. aureus biofilms, which are known to be strongly resistant to antibiotics, and demonstrates high therapeutic efficacy in an animal model of infected ulcers. Mechanistic studies reveal that C14-EDTA can disrupt PpIX crystallization, increase bacterial membrane permeability and sequester divalent cations, thereby improving the accumulation of PpIX in bacteria. This, in turn, enhances reactive oxygen species (ROS) production and the antibacterial photodynamic activity. Overall, this effective strategy holds great promise in combating antibiotic-resistant strains.


Assuntos
Fotoquimioterapia , Staphylococcus aureus , Animais , Protoporfirinas/farmacologia , Ácido Edético/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
3.
Medicine (Baltimore) ; 103(16): e37855, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640292

RESUMO

RATIONALE: The bullous variant of central serous chorioretinopathy (CSC) is a severe form of chronic CSC. Patients with the bullous variant of CSC have an increased risk of experiencing multiple pigment epithelial detachments (PEDs) and retinal pigment epithelium (RPE) tears. Photodynamic therapy (PDT) is a treatment for the bullous variant of CSC. RPE tear is a possible postoperative complication of PDT for eyes with PEDs. To our knowledge, no cases of giant RPE tears following PDT for the bullous variant of CSC have been reported previously. This case report presents the first instance of a giant RPE tear after half-time PDT for the bullous variant of CSC, accompanied by a series of images depicting the tear development. PATIENT CONCERNS: A 63-year-old male patient presented with rapidly deteriorating vision in his left eye over a 3-month period. He also reported a previous episode of vision loss in his right eye 2 years prior. Best-corrected visual acuity (BCVA) in the left eye was 0.2. DIAGNOSIS: The right eye was diagnosed with chronic non-bullous CSC, while the left eye was diagnosed with the bullous variant of CSC with a large PED. INTERVENTIONS: Half-time PDT was administered to the left eye. OUTCOMES: One month after half-time PDT, a giant RPE tear exceeding 3 clock-hours in size was confirmed in the lower temporal quadrant of the left eye. Three months after the initial half-time PDT, a second half-time PDT was performed owing to recurrent retinal detachment. Two months after the second half-time PDT, the retinal detachment resolved, and BCVA improved to 0.4, 6 months after the second half-time PDT. LESSONS: In cases where the bullous variant of CSC is complicated by extensive PED, clinicians should consider the potential development of a giant RPE tear as a treatment complication.


Assuntos
Coriorretinopatia Serosa Central , Fotoquimioterapia , Descolamento Retiniano , Perfurações Retinianas , Masculino , Humanos , Pessoa de Meia-Idade , Coriorretinopatia Serosa Central/induzido quimicamente , Coriorretinopatia Serosa Central/tratamento farmacológico , Coriorretinopatia Serosa Central/complicações , Descolamento Retiniano/etiologia , Fotoquimioterapia/efeitos adversos , Fotoquimioterapia/métodos , Acuidade Visual , Perfurações Retinianas/cirurgia , Perfurações Retinianas/complicações , Angiofluoresceinografia , Pigmentos da Retina/uso terapêutico , Tomografia de Coerência Óptica , Fármacos Fotossensibilizantes/efeitos adversos , Estudos Retrospectivos
4.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560761

RESUMO

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Assuntos
Antineoplásicos , Fotoquimioterapia , Porfobilinogênio/análogos & derivados , Pró-Fármacos , Humanos , Boro/farmacologia , 60439 , Corantes , Pró-Fármacos/farmacologia , Cobalto/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Antineoplásicos/efeitos da radiação , Compostos de Boro/farmacologia , Compostos de Boro/efeitos da radiação , Oxigênio Singlete/metabolismo , Luz
5.
Medicine (Baltimore) ; 103(15): e37629, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608090

RESUMO

Basal cell carcinoma (BCC) represents the most prevalent cancer globally. The past decade has witnessed significant advancements in BCC treatment, primarily through bibliometric studies. Aiming to perform a comprehensive bibliometric analysis of BCC treatments to comprehend the research landscape and identify trends within this domain, a dataset comprising 100 scientific publications from the Web of Science Core Collection was analyzed. Country co-operation, journal co-citation, theme bursts, keyword co-occurrence, author co-operation, literature co-citation, and field-specific references were examined using VOSviewer and CiteSpace visualization tools. These articles, published between 2013 and 2020, originated predominantly from 30 countries/regions and 159 institutions, with the USA and Germany at the forefront, involving a total of 1118 authors. The keyword analysis revealed significant emphasis on the hedgehog pathway, Mohs micrographic surgery, and photodynamic therapy. The research shows developed nations are at the forefront in advancing BCC therapies, with significant focus on drugs targeting the hedgehog pathway. This treatment avenue has emerged as a crucial area, meriting considerable attention in BCC therapeutic strategies.


Assuntos
Carcinoma Basocelular , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Bibliometria , Carcinoma Basocelular/terapia , Proteínas Hedgehog , Neoplasias Cutâneas/terapia
6.
Biochem Biophys Res Commun ; 710: 149835, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38574457

RESUMO

We report application of the fluorescence lifetime imaging microscopy (FLIM) for analysis of distributions of intracellular acidity using a chlorin-e6 based photosensitizer Radachlorin. An almost two-fold increase of the photosensitizer fluorescence lifetime in alkaline microenvironments as compared to acidic ones allowed for clear distinguishing between acidic and alkaline intracellular structures. Clusterization of a phasor plot calculated from fits of the FLIM raw data by two Gaussian distributions provided accurate automatic segmentation of lysosomes featuring acidic contents. The approach was validated in colocalization experiments with LysoTracker fluorescence in living cells of four established lines. The dependence of photosensitizer fluorescence lifetime on microenvironment acidity allowed for estimation of pH inside the cells, except for the nuclei, where photosensitizer does not penetrate. The developed method is promising for combined application of the photosensitizer for both photodynamic treatment and diagnostics.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Lisossomos , Concentração de Íons de Hidrogênio , Combinação de Medicamentos
7.
J Photochem Photobiol B ; 254: 112904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579534

RESUMO

The fluorescence lifetime of a porphyrinic photosensitizer (PS) is an important parameter to assess the aggregation state of the PS even in complex biological environments. Aggregation-induced quenching of the PS can significantly reduce the yield of singlet oxygen generation and thus its efficiency as a medical drug in photodynamic therapy (PDT) of diseased tissues. Hydrophobicity and the tendency to form aggregates pose challenges on the development of efficient PSs and often require carrier systems. A systematic study was performed to probe the impact of PS structure and encapsulation into polymeric carriers on the fluorescence lifetime in solution and in the intracellular environment. Five different porphyrinic PSs including chlorin e6 (Ce6) derivatives and tetrakis(m-hydroxyphenyl)-porphyrin and -chlorin were studied in free form and combined with polyvinylpyrrolidone (PVP) or micelles composed of triblock-copolymers or Cremophor. Following incubation of HeLa cells with these systems, fluorescence lifetime imaging combined with phasor analysis and image segmentation was applied to study the lifetime distribution in the intracellular surrounding. The data suggest that for free PSs, the structure-dependent cell uptake pathways determine their state and emission lifetimes. PS localization in the plasma membrane yielded mostly monomers with long fluorescence lifetimes whereas the endocytic pathway with subsequent lysosomal deposition adds a short-lived component for hydrophilic anionic PSs. Prolonged incubation times led to increasing contributions from short-lived components that derive from aggregates mainly localized in the cytoplasm. Encapsulation of PSs into polymeric carriers led to monomerization and mostly fluorescence emission decays with long fluorescence lifetimes in solution. However, the efficiency depended on the binding strength that was most pronounced for PVP. In the cellular environment, PVP was able to maintain monomeric long-lived species over prolonged incubation times. This was most pronounced for Ce6 derivatives with a logP value around 4.5. Micellar encapsulation led to faster release of the PSs resulting in multiple components with long and short fluorescence lifetimes. The hydrophilic hardly aggregating PS exhibited a mostly stable invariant lifetime distribution over time with both carriers. The presented data are expected to contribute to optimized PDT treatment protocols and improved PS-carrier design for preventing intracellular fluorescence quenching. In conclusion, amphiphilic and concurrent hydrophobic PSs with high membrane affinity as well as strong binding to the carrier have best prospects to maintain their photophysical properties in vivo and serve thus as efficient photodynamic diagnosis and PDT drugs.


Assuntos
Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Células HeLa , Polímeros/química , Porfirinas/química , Povidona/química , Micelas , Linhagem Celular Tumoral
8.
J Photochem Photobiol B ; 254: 112903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608335

RESUMO

This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ±â€¯SD diameter, polydispersity index, and zeta potential were 134 ±â€¯1 nm, -16.1 ±â€¯0.9, and 0.220 ±â€¯0.013, respectively, for CVs and 172 ±â€¯3 nm, -16.4 ±â€¯1.1, and 0.167 ±â€¯0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 µM (CVs) and 0.51 µM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Colangiocarcinoma/tratamento farmacológico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Compostos Organometálicos/farmacologia , Compostos de Zinco , Linhagem Celular Tumoral
9.
Luminescence ; 39(4): e4735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565323

RESUMO

In this work, a near-infrared emissive photosensitizer of 3,3-dimethyl-N,N-diphenyl-2-(thiophen-2-yl)-3H-indol-6-amine functionlized benzothiazolium (DPITT) was developed. DPITT exhibited aggregation-induced emission effect and potent type I and II reactive oxygen species generation capacities after white light irradiation. Taking advantage of the cationic feature, DPITT penetrated the cell membrane and selectively accumulated in the mitochondria in living cells. Upon white light irradiation, the photosensitized DPITT was able to induce mitochondrial dysfunction, leading to cell death. Photosensitized DPITT was further applied to disrupt the multicellular tumour spheroids, demonstrating its potential application in inhibiting hypoxic solid tumours.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Luz , Mitocôndrias/patologia , Mitocôndrias/efeitos da radiação
10.
Nat Commun ; 15(1): 2954, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582750

RESUMO

Single-atom catalysts (SACs) have attracted interest in photodynamic therapy (PDT), while they are normally limited by the side effects on normal tissues and the interference from the Tumor Microenvironment (TME). Here we show a TME-activated in situ synthesis of SACs for efficient tumor-specific water-based PDT. Upon reduction by upregulated GSH in TME, C3N4-Mn SACs are obtained in TME with Mn atomically coordinated into the cavity of C3N4 nanosheets. This in situ synthesis overcomes toxicity from random distribution and catalyst release in healthy tissues. Based on the Ligand-to-Metal charge transfer (LMCT) process, C3N4-Mn SACs exhibit enhanced absorption in the red-light region. Thereby, a water-splitting process is induced by C3N4-Mn SACs under 660 nm irradiation, which initiates the O2-independent generation of highly toxic hydroxyl radical (·OH) for cancer-specific PDT. Subsequently, the ·OH-initiated lipid peroxidation process is demonstrated to devote effective cancer cell death. The in situ synthesized SACs facilitate the precise cancer-specific conversion of inert H2O to reactive ·OH, which facilitates efficient cancer therapy in female mice. This strategy achieves efficient and precise cancer therapy, not only avoiding the side effects on normal tissues but also overcoming tumor hypoxia.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Feminino , Camundongos , Animais , Água , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Hipóxia Tumoral , Microambiente Tumoral , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico
11.
J Nanobiotechnology ; 22(1): 174, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609922

RESUMO

Photothermal therapy is favored by cancer researchers due to its advantages such as controllable initiation, direct killing and immune promotion. However, the low enrichment efficiency of photosensitizer in tumor site and the limited effect of single use limits the further development of photothermal therapy. Herein, a photo-responsive multifunctional nanosystem was designed for cancer therapy, in which myeloid-derived suppressor cell (MDSC) membrane vesicle encapsulated decitabine-loaded black phosphorous (BP) nanosheets (BP@ Decitabine @MDSCs, named BDM). The BDM demonstrated excellent biosafety and biochemical characteristics, providing a suitable microenvironment for cancer cell killing. First, the BDM achieves the ability to be highly enriched at tumor sites by inheriting the ability of MDSCs to actively target tumor microenvironment. And then, BP nanosheets achieves hyperthermia and induces mitochondrial damage by its photothermal and photodynamic properties, which enhancing anti-tumor immunity mediated by immunogenic cell death (ICD). Meanwhile, intra-tumoral release of decitabine induced G2/M cell cycle arrest, further promoting tumor cell apoptosis. In vivo, the BMD showed significant inhibition of tumor growth with down-regulation of PCNA expression and increased expression of high mobility group B1 (HMGB1), calreticulin (CRT) and caspase 3. Flow cytometry revealed significantly decreased infiltration of MDSCs and M2-macrophages along with an increased proportion of CD4+, CD8+ T cells as well as CD103+ DCs, suggesting a potentiated anti-tumor immune response. In summary, BDM realizes photothermal therapy/photodynamic therapy synergized chemotherapy for cancer.


Assuntos
Células Supressoras Mieloides , Neoplasias , Fotoquimioterapia , Biomimética , Linfócitos T CD8-Positivos , Decitabina/farmacologia , Terapia Fototérmica , Neoplasias/tratamento farmacológico
12.
Molecules ; 29(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611853

RESUMO

Gold nanoclusters (Au NCs) with bright emission and unique chemical reactivity characters have been widely applied for optical sensing and imaging. With a combination of surface modifications, effective therapeutic treatments of tumors are realized. In this review, we summarize the recently adopted biosensing and therapy events based on Au NCs. Homogeneous and fluorometric biosensing systems toward various targets, including ions, small molecules, reactive oxygen species, biomacromolecules, cancer cells, and bacteria, in vitro and in vivo, are presented by turn-off, turn-on, and ratiometric tactics. The therapy applications are concluded in three aspects: photodynamic therapy, photothermal therapy, and as a drug carrier. The basic mechanisms and performances of these systems are introduced. Finally, this review highlights the challenges and future trend of Au NC-based biosensing and therapy systems.


Assuntos
Fotoquimioterapia , Portadores de Fármacos , Fluorometria , Ouro/uso terapêutico , Terapia Fototérmica
13.
Molecules ; 29(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38611902

RESUMO

The field of molecular cages has attracted increasing interest in relation to the development of biological applications, as evidenced by the remarkable examples published in recent years. Two key factors have contributed to this achievement: First, the remarkable and adjustable host-guest chemical properties of molecular cages make them highly suitable for biological applications. This allows encapsulating therapeutic molecules to improve their properties. Second, significant advances have been made in synthetic methods to create water-soluble molecular cages. Achieving the necessary water solubility is a significant challenge, which in most cases requires specific chemical groups to overcome the inherent hydrophobic nature of the molecular cages which feature the organic components of the cage. This can be achieved by either incorporating water-solubilizing groups with negative/positive charges, polyethylene glycol chains, etc.; or by introducing charges directly into the cage structure itself. These synthetic strategies allow preparing water-soluble molecular cages for diverse biological applications, including cages' anticancer activity, anticancer drug delivery, photodynamic therapy, and molecular recognition of biological molecules. In the review we describe selected examples that show the main concepts to achieve water solubility in molecular cages and some selected recent biological applications.


Assuntos
Sistemas de Liberação de Medicamentos , Fotoquimioterapia , Polietilenoglicóis , Água
14.
Molecules ; 29(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38611962

RESUMO

Phytocompounds have been evaluated for their anti-glioblastoma actions for decades, with promising results from preclinical studies but only limited translation into clinics. Indeed, by targeting multiple signaling pathways deregulated in cancer, they often show high efficacy in the in vitro studies, but their poor bioavailability, low tumor accumulation, and rapid clearance compromise their efficacy in vivo. Here, we present the new avenues in phytocompound research for the improvement of glioblastoma therapy, including the ways to enhance the response to temozolomide using phytochemicals, the current focus on phytocompound-based immunotherapy, or the use of phytocompounds as photosensitizers in photodynamic therapy. Moreover, we present new, intensively evaluated approaches, such as chemical modifications of phytochemicals or encapsulation into numerous types of nanoformulations, to improve their bioavailability and delivery to the brain. Finally, we present the clinical trials evaluating the role of phytocompounds or phytocompound-derived drugs in glioblastoma therapy and the less studied phytocompounds or plant extracts that have only recently been found to possess promising anti-glioblastoma properties. Overall, recent advancements in phytocompound research are encouraging; however, only with more 3D glioblastoma models, in vivo studies, and clinical trials it is possible to upgrade the role of phytocompounds in glioblastoma treatment to a satisfactory level.


Assuntos
Glioblastoma , Fotoquimioterapia , Humanos , Glioblastoma/tratamento farmacológico , Encéfalo , Temozolomida , Imunoterapia
15.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612420

RESUMO

Necrobiosis Lipoidica (NL) is a dermatological condition characterized by the development of granulomatous inflammation leading to the degeneration of collagen and subsequent formation of yellowish-brown telangiectatic plaques usually localized on the pretibial skin of middle-aged females. Due to its rarity and unclear etiopathogenesis, therapeutic options for NL are not well-standardized. Among them, photodynamic therapy (PDT) is an emerging tool, although its efficacy has primarily been evaluated in single case reports or small case series. This study reports the real-life experience of a cohort of NL patients treated with PDT at the Section of Dermatology of the University Hospital of Messina and Reggio-Emilia. From 2013 to 2023, 17 patients were enrolled -5 males (29%) and 12 females (71%) aged between 16 and 56 years (mean age: 42 ± 13 years), with a median duration of NL of 8 years. The overall complete clearance (>75% lesion reduction) was 29%, while the partial clearance (25-75% lesion reduction) was 59%, with 12% being non-responders. This study adds to the little amount of evidence present in the literature regarding the effectiveness of PDT in the treatment of NL. Variability in treatment responses among patients underscores the need for personalized protocols, optimizing photosensitizers, light sources, and dosimetry. The standardization of treatment protocols and consensus guidelines are essential to ensure reproducibility and comparability across studies.


Assuntos
Asteraceae , Necrobiose Lipoídica , Fotoquimioterapia , Feminino , Masculino , Pessoa de Meia-Idade , Humanos , Adolescente , Adulto Jovem , Adulto , Necrobiose Lipoídica/tratamento farmacológico , Reprodutibilidade dos Testes , Pele
16.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612619

RESUMO

The persistent failure of standard chemotherapy underscores the urgent need for innovative and targeted approaches in cancer treatment. Photodynamic therapy (PDT) has emerged as a promising photochemistry-based approach to address chemoresistance in cancer regimens. PDT not only induces cell death but also primes surviving cells, enhancing their susceptibility to subsequent therapies. This review explores the principles of PDT and discusses the concept of photodynamic priming (PDP), which augments the effectiveness of treatments like chemotherapy. Furthermore, the integration of nanotechnology for precise drug delivery at the right time and location and PDT optimization are examined. Ultimately, this study highlights the potential and limitations of PDT and PDP in cancer treatment paradigms, offering insights into future clinical applications.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Resistencia a Medicamentos Antineoplásicos , Protocolos Antineoplásicos , Morte Celular , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
17.
J Nanobiotechnology ; 22(1): 179, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616270

RESUMO

We report on the fabrication of mesoporous silicon dioxide coated Haliclona sp. spicules (mSHS) to enhance the delivery of the insoluble photosensitizer protoporphyrin IX (PpIX) into deep skin layers and mediate photodynamic therapy for metastatic melanoma in mice. The mSHS are dispersed sharp edged and rod-like micro-particles with a length of approximate 143.6 ± 6.4 µm and a specific surface area of 14.9 ± 3.4 m2/g. The mSHS can be topically applied to the skin, adapting to any desired skin area and lesion site. The insoluble PpIX were incorporated into the mesoporous silica coating layers of mSHS (mSHS@PpIX) with the maximum PpIX loading capacity of 120.3 ± 3.8 µg/mg. The mSHS@PpIX significantly enhanced the deposition of PpIX in the viable epidermis (5.1 ± 0.4 µg/cm2) and in the dermis (0.5 ± 0.2 µg/cm2), which was 154 ± 11-fold and 22 ± tenfold higher than those achieved by SHS, respectively. Topical delivery of PpIX using mSHS (mSHS@PpIX) completely eradicated the primary melanoma in mice in 10 days without recurrence or metastasis over 60 days. These results demonstrate that mSHS can be a promising topical drug delivery platform for the treatment of diverse cutaneous diseases, such as metastatic melanoma.


Assuntos
Melanoma , Fotoquimioterapia , Animais , Camundongos , Melanoma/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Pele , Dióxido de Silício
18.
Anal Chem ; 96(16): 6148-6157, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38603515

RESUMO

Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.


Assuntos
Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Células HeLa , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Análise Espectral Raman , Rosa Bengala/química , Rosa Bengala/farmacologia , Microscopia Óptica não Linear , Relação Dose-Resposta a Droga
19.
J Med Chem ; 67(8): 6537-6548, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38603561

RESUMO

Herein, we have compared the effectivity of light-based photoactivated cancer therapy and ultrasound-based sonodynamic therapy with Re(I)-tricarbonyl complexes (Re1-Re3) against cancer cells. The observed photophysical and TD-DFT calculations indicated the potential of Re1-Re3 to act as good anticancer agents under visible light/ultrasound exposure. Re1 did not display any dark- or light- or ultrasound-triggered anticancer activity. However, Re2 and Re3 displayed concentration-dependent anticancer activity upon light and ultrasound exposure. Interestingly, Re3 produced 1O2 and OH• on light/ultrasound exposure. Moreover, Re3 induced NADH photo-oxidation in PBS and produced H2O2. To the best of our knowledge, NADH photo-oxidation has been achieved here with the Re(I) complex for the first time in PBS. Additionally, Re3 released CO upon light/ultrasound exposure. The cell death mechanism revealed that Re3 produced an apoptotic cell death response in HeLa cells via ROS generation. Interestingly, Re3 showed slightly better anticancer activity under light exposure compared to ultrasound exposure.


Assuntos
Antineoplásicos , Fenantrolinas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Células HeLa , Fenantrolinas/química , Fenantrolinas/farmacologia , Rênio/química , Rênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/efeitos da radiação , Apoptose/efeitos dos fármacos , Luz , Espécies Reativas de Oxigênio/metabolismo , Terapia por Ultrassom , Fotoquimioterapia , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias/tratamento farmacológico
20.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA